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ARTICLE

Genome Scanning by Composite Likelihood
Newton Morton, Nikolas Maniatis, Weihua Zhang, Sarah Ennis, and Andrew Collins

Ambitious programs have recently been advocated or launched to create genomewide databases for meta-analysis of
association between DNA markers and phenotypes of medical and/or social concern. A necessary but not sufficient
condition for success in association mapping is that the data give accurate estimates of both genomic location and its
standard error, which are provided for multifactorial phenotypes by composite likelihood. That class includes the Malecot
model, which we here apply with an illustrative example. This preliminary analysis leads to five inferences: permutation
of cases and controls provides a test of association free of autocorrelation; two hypotheses give similar estimates, but
one is consistently more accurate; estimation of the false-discovery rate is extended to causal genes in a small proportion
of regions; the minimal data for successful meta-analysis are inferred; and power is robust for all genomic factors except
minor-allele frequency. An extension to meta-analysis is proposed. Other approaches to genome scanning and meta-
analysis should, if possible, be similarly extended so that their operating characteristics can be compared.
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Like other sciences, genetic epidemiology is both limited
and driven by the techniques at its command. For nearly
a century, gene localization was dominated by linkage and
cytogenetics, with little opportunity to map a gene through
associated markers. Finally, short physical maps of regions
identified by linkage provided a basis for localization of
rare major genes in haplotypes.1 The Malecot model was
useful for this purpose,2,3 with subsequent extension to
oligogenes and diplotypes.4,5 Maturity, if not completion,
of the Human Genome Project accelerated this develop-
ment by providing a physical map, which led, in turn, to
genetic maps in linkage disequilibrium units (LDUs).4 Var-
ious efforts, including the HapMap Project, undertook to
provide evidence on marker diversity, with the goal of
using that information to localize disease genes and to
investigate other aspects of the diversity revealed by ge-
netic polymorphism.6–8

After 3 years of LDU development, map construction is
now rapid and accurate. Theory and practice for allelic
association in small regions appear stable, but further pro-
gress will come from experience with scans of much longer
tracts. From their upper limit, they have been called “ge-
nome scans,” a misnomer, since a large tract, chromo-
some, or set of chromosomes delimited without regard to
association is analyzed in the same way: by division into
contiguous, nonoverlapping regions. Whatever the termi-
nology or method, such a scan is only stage 1 in a mul-
tistage design, since the later stages are concerned with
regions selected for evidence of association. The number
of markers in a dense scan is extremely large compared
with the number of causal sites likely to be detected even
in a large sample, whether or not supported by functional
tests. This is a challenge to the false-discovery rate (FDR),
originally introduced for localization of major loci by link-
age.9 Unfortunately, it cannot be conventionally calcu-

lated when the probability of the null hypothesis ap-
proaches 1.10,11 In that situation, alternative corrections
have been developed to determine the real significance
corresponding to nominal significance in a large number
of tests.

Like its predecessors in small regions, genome scans use
composite likelihood that adds together individual com-
ponent log likelihoods, each of which corresponds to a
marginal or conditional event.12 Each component is a
function of location on a map in LDUs or, less efficiently,
on a correlated linkage or physical map.13 This use of com-
posite likelihood combines three different statistical prob-
lems. First, most statistical hypotheses in genetics are com-
posite, in the sense that the hypothesis is “composed” of
a group of simple hypotheses that may specify gene fre-
quency, effect, or location, which results in a treble infin-
ity of possible values. Composite likelihood can estimate
location conditional on other variables or concurrently.
Second, the number of markers varies even among regions
of the same length, with corresponding variation in the
estimate of composite likelihood. Third, markers in prox-
imity are not independent but autocorrelated to an extent
that is partially predictable from their LDU location but
less accurately from their physical location. The effect of
this autocorrelation is small (although perhaps not neg-
ligible) at low resolution but increases to an unknown
extent with marker density. Until this limitation is re-
moved, the genetic epidemiologist must choose between
uncertain reliability at high density and loss of power by
heavy selection of markers (commonly called “tag SNPs”
because most of them are SNPs). We shall now show how
these difficulties can be resolved, both in single studies
and in meta-analyses of unbiased reports, recently advo-
cated or launched without identification of the metrics
that provide reliable combination of evidence.8,14
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Table 1. Frequencies Observed and Expected in Random Samples of n
Haplotypes a(ad 5 bc � 0, b � c)

Status and Sample

Allele

TotalG g

Affected or normal:
Count a b a � b
Probability f[z � (1 � z)R] f(1 � z)(1 � R) f

Normal or affected:
Count c d c � d
Probability (R � f)z � R(1 � f)(1 � z) (1 � R)[z � (1 � f)(1 � z)] 1 � f

Total:
Count a � c b � d n
Probability R 1 � R 1

a See the work of Maniatis et al.5

Methods
Maps in LDU under the Malecot Model

All pairs of codominant diallelic diplotypes under randomn/2
mating can be reduced from a table to a count of3 # 3 2 # 2
haplotype frequencies

a bF Fc d

that, by interchange of rows and/or columns, satisfy ad � bc �

and .4 The optimal measure of allelic association is0 b � c

ad � bc
r̂ p ,

(a � b)(b � d)

with information

n(a � b)(b � d)
K pr (a � c)(c � d)

under the null hypothesis that , which is tested by 2r p 0 x p1

.3 The Malecot model predicts r as , where2 �S� dh hr̂ K (1 � L)Me � Lr

is the distance (in kilobases [kb]) between adjacent markers hdh

and . This is an enhancement of the less reliable predictionh � 1
from the physical map that approximates distance by .2 The�Sdh

composite likelihood over all markers in a region is ,�L/2lk p e
where .2 Given a physical map, the parameters M,ˆL p SK (r � r)r

L, and � are estimated from pairs of diallelic markers. The estimate
of � in the physical map is small and highly variable. The LDU
map estimates M, L, and the that represent the block-and-step�h

pattern of LD. Optionally, the exponent can be taken as ,�S� dh h

where � is estimated for a candidate region, but � is usually too
close to 1 to warrant refinement. These calculations are performed
by the LDMAP program,5 the current version of which exploits
grid technology to accommodate the high SNP density in HapMap.

Association Mapping with the Malecot Model

Quantitative traits can be studied by regression, giving scope un-
der some sampling schemes to valid covariance analysis and in-
ference of gene-environment interaction. Quantitative traits are
especially frequent for anthropometrics, behavior, and response
to drugs or other pharmaceutical agents but can occur in any
branch of human genetics. Commonly, however, phenotypes are

dichotomous; the two classes are “affected” and “normal” if sam-
pled at random or “cases” and “controls” if sampled selectively.
Controls may be random, matched with cases for age and other
variables, or hypernormal. The last is more powerful but difficult
to analyze by regression, because the sample-enrichment factor
is poorly specified and environmental covariates may be dis-
torted. For example, hypernormal controls selected to be older
than cases do not imply that affection decreases with age.

In the simplest case, affection is determined by a rare dominant
or recessive gene and is studied in families so that the disease-
associated allele can be recognized.2 Alternatively, inheritance may
be more complex, and then alleles are assumed to be additive.
This is not restrictive, because Maclauren’s calculus theorem pre-
dicts that causal markers of small effect tend to approach addi-
tivity, which is enhanced for predictive but noncausal SNPs by
recombination. This simplifying assumption reduces diplotype
data to a table of allele counts by affection status,4 deferring2 # 2
more elaborate analysis until causal SNPs are identified. In this
way, n haplotypes are scored from diplotypes. The associationn/2
parameter is , where is the attributable risk underz p gr g p Qw/f
additivity, Q is the frequency of an allele predisposing to affec-
tion, f is the frequency of affected diplotypes, w is the penetrance
in GG homozygotes with corresponding penetrance in Ggw/2
heterozygotes, and r is the association probability when g p 1
(table 1).2,5 The score for z is

� ln lk (ad � bc)n
U p p ,z

�z (a � c)(c � d)

with information

n(a � b)(b � d)
K p ,z (a � c)(c � d)

which is formally the same as that for in the previous section,Kr

but the counts are different. Then,

U ad � bczẑ p p
K (a � b)(b � d)z

and . Since SNPs with or2 2ˆx p z K (a � c)(c � d) p 0 (a � b)(b �1 z
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Figure 1. Subhypotheses under the Malecot model. A circumflex
(^) indicates a parameter that is estimated in association mapping,
and the subscript p indicates a parameter estimated from other
data. L is the asymptote at large distance, M is the increment
maximized at 0 distance, S is the location of the causal SNP (with
the assumption that there is one in the region), and � is the
coefficient of distance near S in the physical or LDU map. The two
most frequent tests are versus C and versus D.AC p A AD p A

are omitted because their information is 0 or indeter-d) p 0 Kz

minate, must satisfyKz

2x10 ! K p � n .z 2ẑ

At present, we do not consider an enrichment factor, which com-
bines with affection status to create complications not met in
construction of LD maps or mapping of rare genes with high
penetrance.2 Omission of an enrichment factor does not violate
constraints on observed counts or K, but it may not be optimal.

However the enrichment issue is resolved, association mapping
accepts kb and LD maps and estimates parameters M and L
appropriate to the relationship of affection status with diallelic
markers and, in addition, the estimated location and SE of aŜ
causal marker, regardless of whether that marker was included
in the data set. For this analysis, in the physical map or�Sdh

in the LDU map is replaced by . Since lk is a�S� d �D(S � S)h h h

composite likelihood, the parameters but not the error variance
can be estimated by minimizing L as for true likelihood. Expe-
rience has shown that � cannot be estimated reliably during as-
sociation mapping of S, whereas the accuracy with which L can
be estimated increases with the length of the LDU region.5 We
therefore examined three analyses that do not attempt to modify
� or a standard LD map derived from pairs of markers (fig. 1).
The simplest one compares A and C, where A assumes no causal
marker in the region, with L predicted and ; the alternativeM p 0
C takes the same value of L but estimates M and S. The second
analysis compares A with D, which estimates L, M, and S. The
third analysis takes B under the null hypothesis that withM p 0
L estimated and compares it with D. This has the least power,
because B confounds with L and will not be considered here.H1

Control of Type I Error

Under the null hypothesis that there is no causal marker inH0

a region j with mj markers, composite likelihood analyses provide
an estimate of or for the ith replicate inx p L � L L � Lij Aij Cij Aij Dij

the jth region ( ), designated as ACij or ADij, respectively.i p 1, … rj

Each replicate is obtained by shuffling, so that each individual is
assigned randomly and without replacement to an observed phe-
notype, whether case/control, affected/normal, or quantitative.
If SNPs were independent, the error variance in a region would
be estimated for each replicate by and VD byV p L /(m � 2)C C

, and this would provide an estimate of or from2 2L /(m � 3) x xD 2 3

which the significance level P would be derived. Since autocor-
relation violates the independence assumption to an extent that
increases with SNP resolution, we must use different estimates of
these quantities to recover Pij for replicates beginning with the
fractional rank rij within the jth region, which equals the frac-
tional rank of , reversing the xij order. If nearly every Pij is1/xij

unique within region j, the mean approaches 1/2, and the vari-
ance approaches 1/12 as , corresponding to the uniformr r �j

distribution that is a special case of a beta distribution. Then, a
conventional estimate15 of Pij is

1r �ij 3
,

1r �j 3

from which or is calculated by of the National2 2x x g01fccij2 ij3

Algorithm Group (NAG), and the variance Vij is estimated as

xij ,2xij

which is not monotonic on xij, x2
ij, or Pij. There is no loss under

H0, which relies exclusively on Pij.
The situation is different for a single sample in a region, j, where

H1 may be true, which gives only a single value xj for each analysis
in that region. We estimate its error variance from replicates under
H0 by fitting the regression model in a sub-ln V p b � b ln xij 1 2 ij

region centered as far as possible on the H1 value of xj, with up
to 20 values of xij on each side. Vj under H1 is estimated as

, which gives for or , with corre-2 2 2exp (b � b ln x ) x p x /V x x1 2 j j j j 2 3

sponding Pj from the g01ecc NAG subroutine. By estimation of
Vj from replicates under H0, any effect of autocorrelation is
avoided.

As the first step toward genome scanning, a program called
CHROMSCAN was constructed to perform the operations de-
scribed above for tracts, chromosomes, or a whole genome (A.C.,
unpublished data). The region can be any length, with a 10 LDU
default. The minimal number of SNPs is also specified, with a
default of 30. Any number of replicates within a region can be
chosen for evaluation of real data that contribute a single estimate
to each region. Significance tests for association are based entirely
on P, but the error variance Vj is used to compute an SE for Sj.
Starting at converged values and with use of exact derivatives,
simultaneous estimates of Sj and nuisance parameters that may
include Mj and/or Lj provide an information matrix that is in-
verted to give the nominal variance . Then, the information�1KSS

Kj about Sj is

�11/KSS ,
V /dfj
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Table 2. Essential Data for Meta-Analysis
of a Region

Variable Value
Kb and

LDU

Source ID …
Chromosome 1…22, X, or Y …
No. of SNPs mj …
First location in region … *
Last location in region … *
Composite likelihooda: … *

P … *
Estimated location (S) … *
SE … *
Information (K) … *

Most significant marker: * *
Nominal 2x1 * …

NOTE.—An asterisk (*) indicates that the data are often
incomplete.

a Linkage data should be expressed in this form, but SEs
are less reliable and often cover multiple LDU regions; usu-
ally S, SE, and K are not estimated.

where or 3 according to the model, and the correspondingdf p 2
SE is2

�SE(S ) p 1/K .j j

Its reliability under autocorrelation may be confirmed when the
true value of S is known simply by fitting the nuisance parameters
M and/or L at that value. Then the difference in x2 evaluated at
Vj is , and2x1j

2x1jK ≈ .j 2ˆ(S � S )j j

Estimating the FDR

The concept of an FDR was introduced to map major genes by
polymorphisms at single loci, which led to the conclusion that
a LOD of at least 3 is required to assure an FDR !0.05.9 Forty years
later, an analogy with Brownian motion extended this argument
to a genome scan by linkage, with the conclusion that only a
modest increase of the critical LOD (to 3.3) gives the same FDR
with a major locus, increasing for complex inheritance to 3.6 for
affected sib pairs and to 3.8 for affected second cousins.16 Asso-
ciation mapping presents a different problem, since relatives of
probands are usually excluded to generate large samples without
requiring pedigree information. This sampling strategy is efficient
for either a cohort or cases and controls and is especially useful
for diseases of late onset, where DNA from one or both parents
is often not available. Here we extend the FDR theory to asso-
ciation mapping and apply it to composite likelihood for unre-
lated individuals. In principle, our approach is applicable to any
sampling strategy, even if standard FDR methods fail because the
distribution of the nominal significance under the null hypoth-
esis H0 is not uniform and/or the prior probability of H0 may
approach 1. We assume that simulation as shown in the “Control
of the Type I Error” section creates a uniform distribution under
H0 and that the prior probability of H0 approaches 1. The material
to be analyzed may be a tract, a chromosome, a set of chromo-
somes, or a genome. However defined, it is divided into non-
overlapping regions. When values of are pooled under the2x1

assumption of a Poisson distribution of extreme significance lev-
els, the critical significance level satisfies , whereP p a aN p .05
N in the absence of compelling evidence of a causal locus in a
defined subset of regions is the number of regions in a genome
scan (a r 0, ). The FDR corresponding to a isN r �

a(1 � f) a
p ,

a(1 � f) � Qf a � Qf/(1 � f)

where Q is the power to reach significance under H1 and f is the
probability that H1 is true whether significant or not. In genome
scans f and Qf are of order or less, which makes this estimate1/N
impractical. Fortunately, we have independent estimates of the
numerator and denominator, as illustrated in the “Results” sec-
tion. Their ratio is a good estimate of the FDR if a uniform dis-
tribution holds under H0 and the number of H1 regions is large
enough to determine Q.

Presentation of Evidence

Stage 1 in association mapping is currently defined as “a scan of
one or more nonoverlapping regions, including but not limited
to regions suggested by linkage, function, or cytogenetics.” The
evidence presented for stage 1 sets a pattern and limit for subse-
quent meta-analysis, so its presentation is critical. Location would
ideally be expressed in LDUs, which, in the few published trials,
have been shown to be more efficient for association mapping
than for physical units (kb).5,13 However, the latter have ap-
proached stability with revisions that are increasingly minor, in-
frequent, and generally accepted. LD maps, on the contrary, are
more recent, with rapidly increasing density and potential changes
in types and allele frequencies of markers. Although public (Ge-
netic Epidemiology Group), these maps are not part of the Hap-
Map database17 and are not exploited by all investigators. There-
fore, until consensus is reached, it is necessary to convert evidence
from LD maps into more stable but reportedly less efficient loca-
tions and SEs (in kb) that the CHROMSCAN program also provides.

In addition to extensive detail about reference maps (kb and
LDU), number of regions studied, the basis for their choice, and
the markers and methods of analysis, we assume a file with one
record for each region within a given chromosome and the critical
variables, where location is expressed as v.u for v kb and u ad-
ditional bp (table 2). The primary and derived locations in both
maps must be clearly indicated. The SE (expected to be consis-
tently smaller than the estimate from a kb map) is the product
of its estimate from the covariance matrix for composite likeli-
hood and kb/LDU, where kb denotes the physical interval cor-
responding to an appropriate interval in LDU. Tentatively, we
assume that the 95% confidence interval as SE is appro-�1.96
priate as a compromise between an interval so small that LDU p

and one so large that blocks and steps outside the confidence0
interval are included. This structure allows regions to be sorted
by any variable. For publication, only the smallest P values for
composite likelihood would usually be given, together with larger
values that relate to other claims. However, selective reporting of
a region biases meta-analysis.

Given s independent and unbiased samples for a given region,
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and with the assumption that the same kb map was used for all
samples, the simplest meta-analysis gives

s� S Kk k— kp1S p ,�Kk

with nominal variance . Variation in allele frequencies, as-1/SKk

certainment, or other factors may inflate

2(SK S )k k2 2x p SK S � .s�1 k k
SKk

Interpretation becomes difficult if s is small, unless the sources
of variation are controlled. If s were very large, the SE would be

21 xs�1�SE p .( )( )s � 1�Kk

In general,

2xs�1�
s � 1

may be taken as 1 if nonsignificant and, otherwise, as t with
df in computing a confidence interval. For example, a nom-s � 1

inal 95% confidence limit is

— 1�S � t ,�K

where t is 12.706 for and 1.960 for . However, thedf p 1 df p �

block-and-step structure of LD makes any interval in kb approx-
imate. Inclusion of LD maps in the HapMap database would in-
crease its use for association mapping.

To apply this logic to a genome scan of N regions, suppose that
a subset with is selected for further study in an independentP ! a

sample of greater size and with denser markers. For each of the
selected regions, pooling the information from the two samples
with point estimates S1 and S2 and information K1 and K2, re-
spectively, and with the assumption of homogeneity, the FDR
can be calculated as for a single stage 1 sample from N regions.
Within stage 1, the principal uncertainties involve regional def-
inition and number of replicates (r). We tentatively assume that

is adequate to estimate P for H1. For greater precisionr p 1,000
with extreme H1 probabilities, the corresponding regions may be
simulated under H0 with at least replicates.10/P

Results
An Illustrative Example

The CHROMSCAN program is being extended and refined
as it is applied to several association studies, the publica-
tion of which is necessarily delayed by consortium agree-
ments. We have therefore taken as an illustrative example
the U.K. case/control sample of the International Type 2
Diabetes (T2D) 1q Consortium,18 with affection status re-
placed by a random SNP for each region, deleting all in-
formation about the actual disease and reducing by 1 the

number of predictive SNPs in that region. Here, we analyze
the 39 regions in chromosome 1q21-24 over a 21,347-kb
interval on the National Center for Biotechnology Informa-
tion build 35/University of California–Santa Cruz March
2004 sequence, which was used to create a genomewide
LDU map from the northwestern European (CEU) sample
in International HapMap phase 2, with the exclusion of
SNPs with minor-allele frequencies (MAFs) !0.05 or x2 for
the Hardy-Weinberg test 110. The data consist of 447 con-
trols and 443 cases. Whereas this CEU sample of 60 is
smaller than the U.K. control sample, the number of SNPs
is vastly greater and possibly gives a more accurate LDU
map. The same exclusions were made from the U.K. sam-
ple, leaving 3,547 SNPs in the reference interval, of which
296 were not identified in the HapMap sample and were
therefore interpolated from kb to LDU location.19 The av-
erage density was 1 SNP per 6 kb, and the map length was
458 LDU. One SNP was randomly drawn from each region,
as defined by the CHROMSCAN default under H0 (at least
30 SNPs and 10 LDU), which retained these regions even
when replacement of affection status by a random SNP
reduced the number of predictive SNPs to 29. To dichoto-
mize affection status under H1, we pooled the rare homo-
zygote with the heterozygote as “affected” and the other
homozygote as controls. To simulate H0, the H1 observa-
tions from a region were shuffled and assigned at random
to generate 1,000 replicates with the same frequencies of
cases and controls and the same number of SNPs remain-
ing in the jth region. These samples are sufficient to test
significance of association under H0 and relative power of
AC and AD metrics under H1. Complexities of meta-anal-
ysis with heterogeneous data that may include single
SNPs, haplotypes, probability products, linkage estimates,
and coalescent assay raise problems that will take longer
to solve.

Our first application of these simulated data was to ex-
amine their operating characteristic, which depends on
the probability f that H1 is true for a random region in
a genome scan. In the current HapMap build, there are
∼65,000 LDUs (Genetic Epidemiology Group). For a min-
imal region of 10 LDUs and a marker density sufficiently
high to give at least 30 markers per region, cor-f p .001
responds to 6.5 causal markers per genome, whether sig-
nificant or not. When idiomorphs (i.e., diallelic markers
with small MAF) that can be identified more efficiently in
families20,21 are excluded, this f is defensible for associa-
tion mapping in unrelated individuals. Pooling a single
H1 sample with 1,000 shuffled replicates in each region,
the value of is conveniently 0.001. The corre-f/(1 � f)
sponding FDR is . Therefore, if we take1/(1 � .001Q/a)

.05
�6a p p 7.7 # 10 ,

N

a power of is sufficient to keep the FDR !0.05. ThisQ 1 .15
is satisfied in these simulations, but real data require either
a much larger sample or meta-analysis of multiple samples.
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Table 3. Comparison of AC and AD Models within Region
under H1

Variable Y Mean SE F1,38 P ey

2 2lnx � lnxAC AD .0829 .0311 7.106 .0112 1.086
ln V � ln VAC AD �.0706 .0359 3.872 .0567 .932
lnL � lnLAC AD .0123 .0067 3.336 .0756 1.012

ˆ ˆlnFS � SF � lnFS � SFAC AD .3481 .1343 6.715 .0135 1.416

NOTE.— was transformed to 2 df for comparability with2 2lnx � lnxAC AD

.2xAC

To compare performance of the two analyses under H1,
we transformed for AD to with the same P value2 2x x3 2

(NAG g0lfcc), comparable to AC with 2 df. Variables cor-
responding to were submitted to a t test withln(AC/AD)
38 df, with similar results (table 3). AC is significantly
more powerful, largely but perhaps not entirely because
of a greater numerator, since the denominator is sugges-
tively but not significantly smaller than that for AD. Sim-
ilar results were obtained with the skewed difference in-
stead of the logarithm of the ratio. On the contrary, the
absolute deviation of estimated S from its true location
favors AD. These apparently discrepant results may reflect
the conversion from 3 to 2 df, which gives equal weight
to the weakly determined parameter L and the strongly
determined estimate of S. Tentatively, we conclude that
AD is the more reliable test.

Stepwise regression of the mean location error for
or AC and AD separately on variables rep-(AC � AD)/2

resenting noncentrality of the causal SNP within a region,
kb/LDU, SNP density, blocks, steps, and MAF revealed no
predictor of location error at the 5% significance level, but
MAF was suggestive ( ). Other studies have sup-P p .0524
ported decline of power with the MAF.22,18 On these simu-
lated data, the CHROMSCAN logic performed well. Appli-
cations to real data and comparisons with other methods
are being examined.

Discussion

Recent publications have described the high FDRs of cur-
rent functional studies and weakly parametric linkage
analysis, with little promise for meta-analysis.23,24 On the
contrary, two developments favor association mapping in
the post-HapMap era: chips for �500,000 SNPs are be-
coming affordable and are being applied to large samples
that give a low FDR with high power. The mountains of
association data that are now inevitable create an urgent
need to develop and test appropriate methods of analysis
and the databases required for efficient and reliable meta-
analysis. On present evidence, it seems that composite
likelihood, including but perhaps not limited to the Ma-
lecot model, is unique in providing both a point estimate
of location S and its SE without bias by autocorrelation
and, therefore, is the only demonstrated basis for valid
meta-analysis. The most significant single SNP in a re-
gion with m markers provides nominal significance P p

and regional Bonferroni correction2 2Prob(x 1 maxx ) P p1 1 c

. This becomes prohibitively conservative whenm1 � (1 � P)
extended to N regions, given a strong likelihood that m
SNPs in a region with a causal marker do not include that
marker.25 Maximal for single SNPs provides no SE for2x1

location and, therefore, no foundation for inferring the
distance between a predictive marker and a causal one.
Haplotypes have uncontrolled variability in block defini-
tion and length, number of markers, and haplotype group-
ing. Most steps in an LD map interrupt only a minority of
haplotypes, which makes their definition arbitrary.26

Admixture mapping is the most extreme outlier among
methods for association mapping. Estimates of the fre-
quency of a particular ancestral group, the cumulativeprob-
ability of recombination with a causal marker, and the al-
lele frequencies in the two ancestral groups are used to
suggest a conserved region with a disease-related marker.27

The Hardy-Weinberg model is assumed, although it is not
appropriate if mating has been assortative by race. This
approach has identified a region in 8q24 that accounts for
a substantial part of the prostate cancer risk in men of
European and African American origin, especially the lat-
ter.28,29 High significance was confirmed by whole-genome
admixture analysis with only 1,266 SNPs, for a 95% cred-
ible region of 3.8 Mb that includes the earlier assignment.
The regional evidence is therefore overwhelming, but the
confidence interval is huge compared with association
studies based on older populations, much higher marker
density, and composite likelihood. The Bayesian logic that
provides a 95% credible interval ignores autocorrelation
and, like haplotypes, does not give a point estimate or an
SE.30

It has been amply demonstrated that linkage and LD
maps are more highly correlated than either is with the
kb map,19 but they differ in several respects. Linkage maps
are sex-specific and reflect interference but do so inaccu-
rately, because only the Haldane mapping function that
assumes no interference is multilocus feasible, and so a
rough approximation is conventionally made to the better
but still approximate Kosambi function. Population differ-
ences may exist but have not been systematically sought
or found. Selective sweeps are too gradual to affect linkage
maps. On the contrary, LD maps do not reflect interfer-
ence, because multiple recombination in intervals small
enough to retain LD takes place in different generations,
are not sex-specific, and show substantial effects of selec-
tive sweeps and other differences between populations ac-
cumulated over different bottlenecks, outcrosses, and gen-
erations. A population-specific scaling factor to make a
linkage map approximate an LD map must come from the
latter, just as a map derived from coalescent theory is cur-
rently scaled to the linkage map.

Besides these familiar methods, many others have been
suggested but seldom, if ever, used. Under H0, the fitted
parameters of the beta distribution for products of nom-
inal probabilities depart significantly from ,31a p b p 1
whereas, for our estimates of Pij from composite likelihood,
the fit is good. Browning30 reanalyzed data on RFLPs. Be-
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cause of extensive duplication in whole genomes, few of
them have been assigned to maps created by the Human
Genome Project, so neither kb nor LDU mapping was at-
tempted. Verzelli et al.32 combined 100,000 SNPs simulated
by unspecified criteria with 32 real markers, 5 of which
were within the causal sequence and were therefore not
used by other investigators in a proof-of-principle exer-
cise.33 Not surprisingly, simulation of a known location
worked well when limited to markers with an associated
Bayes factor 1200. No attempt was made to relate this
manipulation of the data to a confidence interval and in-
formation metric for meta-analysis. All methods based on
an alternative to composite likelihood have high sensitiv-
ity to number and choice of markers, which leads to the
prediction that their locations and SE (if provided) are less
reliable.

However much current methods for composite likeli-
hood are refined and regardless of whether these refine-
ments are generally accepted, current designs for genetic
information networks raise serious problems.8,14 Genome
scans with 500,000 or more SNPs are envisaged from sam-
ples differing in objectives, ascertainment sources, and co-
variates, without anticipation of how these data would be
analyzed or how the results might be incorporated into
meta-analysis.17 Permissive definition and selection of a
candidate region allow caveat emptor competition among
composite likelihood and single SNPs, haplotypes, link-

age, functional considerations, and other alternatives in
unrelated individuals or families, if they provide a point
estimate of location but perhaps not an SE. Advocates of
single SNPs are free to favor whatever appeals to them
(e.g., tag SNPs, nonsynonymous substitutions, deletions,
insertions, exons, introns, promoters, RNA polymorphisms,
or common or uncommon minor alleles). However, this
permissiveness does not extend to meta-analysis of in-
dependent samples, which is usually required to reach a
significance level sufficient to control the FDR. Efficient
meta-analysis demands reliable SEs, so methods defective
in that regard cannot contribute objectively to localization
of a causal polymorphism within a region. Genome scan-
ning of LD will not realize its potential until information
networks and biobanks overcome barriers to meta-analysis
by adopting the best methods and eliminating inappro-
priate ones.
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Appendix A
Roman Symbols

dh Distance (in kb) between adjacent markers h and h � 1
f Frequency of affected diplotypes in a random sample
i Designates a replicate in the jth region ( )i p 1,…,rj

j Designates a region ( )j p 1,…,N
Kw Information metric for parameter w under H0

Kj Estimate of information about Sj

L Asymptote at large distance in the Malecot model with value between 0 and 1
M Intercept at 0 distance in the Malecot model with value between 0 and 1
mj Number of markers in jth region
n Number of diallelic haplotypes for a specified diallelic pair
N Number of regions tested
p Subscript indicating predicted value
P Nominal significance
Pij Significance of the ith replicate in the jth region
Pc Significance after Bonferroni or similar correction
rj Number of replicates in jth region
Sj Location of a presumptive causal marker in region j
Sk Estimated location of a possible causal marker in sample k
Sh Location of the hth marker
s Number of independent samples for a given region in meta-analysis
Vij Estimate of variance for the ith replicate in region j2x /xij ij

Vj Mean of Vij near xj under H0

w Penetrance in specified homozygote
xj Value of x for a single sample from region j without permutation
xij Difference for the ith replicate in the jth region between two quadratic forms, the first (A) a subhypothesis of

the second (C or D)
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z Attributable risk defined on diplotypes for association mapping in complex inheritance
H0 Null hypothesis of no causal association
H1 Alternative hypothesis of causal association

Greek Symbols
a Conservative significance level p .05/N
g Attributable risk of a two-locus haplotype under additivity
D Kronecker delta that gives correct sign to derivatives of the composite likelihood: if and �1D p 1 S 1 Sh

otherwise
� Scaling factor for association in a kb or LDU map
�h LDU:kb ratio for distance between adjacent markers h and : the interval dh on the kb map correspondsh � 1

to on the LD map� dh h

L Quadratic form in composite 2ˆlikelihood p �K (w � w)w

r Association probability defined on haplotypes for major loci ( ) or construction of LD mapsg p 1
x x2

ij is the estimate of x2 with 2 or 3 df derived from Pij

w Metric (usually r or z) for association between a pair of diallelic markers
Q Power to reach significance under H1

f Probability that H1 is true whether significant or not

Most Useful Formulas

A circumflex (^) indicates a local estimate of a predicted value when both appear in the same formula. A bar above
a symbol indicates a weighted mean of estimates.

For maps in LDU, with no allowance for autocorrelation and map error not directly evaluated,

ad � bc
r̂ p ,

(a � b)(b � d)

�S� dh hr p (1 � L)Me � L ,

and

2ˆL p SK (r � r) .r

For association mapping, with allowance for autocorrelation by permuting,

ad � bc
ẑ p for SNP # affection ,

(a � b)(b � d)

��D(S �S)hz p (1 � L)Me � L ,

and

2ˆL p SK (z � z) .z

For meta-analysis, unlike preceding applications, observed and expected values are not paired (as in and r); instead,r̂

many estimates are associated with a single presumptive causal site:
s� S Kh h— hp1S p ,s� Kh
hp1

21 xs�1�SE ≈ ,( )( )s � 1�Kh

and

2 ( )K if x / s � 1 is nonsignificant� h s�1

K ≈ .
2 ( )K / x / s � 1 else[ ]� h s�1
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For FDR,

a
FDR p .

a � Qf/(1 � f)

For error variance (see the “Control of Type I Error” section),

2replicates (H ) P r x r V0 ij ij ij .
single sample (H or H ) V r V r P0 1 ij j j

Web Resources

The URLs for data presented herein are as follows:

Genetic Epidemiology Group, http://cedar.genetics.soton.ac.uk/
public_html/

International HapMap Project, http://www.hapmap.org/
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